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Abstract. The method of moments (MOM) is a statistically based alternative to sectional and 
modal methods for aerosol simulation. The MOM is highly efficient as the aerosol distribution 
is represented by its lower-order moments and only these, not the full distribution itself, are 
tracked during simulation. Quadrature is introduced to close the moment equations under very 
general growth laws and to compute aerosol physical and optical properties directly from 
moments. In this paper the quadrature method of moments (QMOM) is used in a bivariate test 
tracking of aerosol mixing state. Two aerosol populations, one enriched in soot and the other 
in sulfate, are allowed to interact through coagulation to form a generally-mixed third particle 
population. Quadratures of varying complexity (including two candidate schemes for use in 
climate models) are described and compared with benchmark results obtained by using particle-
resolved simulation. Low-order quadratures are found to be highly accurate, and Gauss and 
Gauss-Radau quadratures appear to give nested lower and upper bounds, respectively, to aerosol 
mixing rate. These results suggest that the QMOM makes it feasible to represent the 
generallymixed states of aerosols and track their evolution in climate models. 

1.  Introduction 
Gaussian quadrature provides a systematic method for approximate evaluation of integrals of the 
form 
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Here ! (m)  is a known kernel function, in this case of particle mass. The weight function f (m)  is the 
aerosol distribution function, and I is some integral property of the distribution. The approximate 
equality gives the quadrature approximation with abscissas and weights, m

i
 and w

i
, respectively, 

determined to give correct values for selected moments of the distribution: 
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A key feature of the quadrature method of moments (QMOM) is that one does not need to follow the 
distribution itself to make the approximation on the right-hand side of equation (1) – only its selected 
moments [1]. This makes for a highly efficient method. For example, given the 2N integral moments 
for k = 0 through 2N-1, the N quadrature points (N abscissas and N weights in correspondence with 
these moments) are determined. Efficient algorithms are available do the inversion, and these are well 
conditioned for small N  (here we consider N values of 1, 2, and 3). Furthermore, the approximate 
equality of equation (1) becomes exact for polynomial kernels of degree less than or equal to 2N-1, as 
is most easily seen by substitution into equation (1) and expanding the integral in the moments defined 
by equation (2). 
 
1.1  Aerosol mixing state 
The remarkable efficiency of the QMOM makes this method ideal for use in atmospheric models. The 
QMOM has been used to represent aerosols in chemical transport models (CTMs) on the 
subhemispheric and regional scale, wherein several types of aerosols were tracked (e.g., sulfate, dust) 
using six moments/three quadrature points per type. Later the QMOM was applied to multicomponent, 
internally mixed populations, with remarkable levels of accuracy demonstrated in comparisons with 
high-resolution sectional models [2]. Even with chemical resolution capability, the QMOM was 
limited to internal mixtures and distribution functions defined along a single radius or mass 
coordinate. Capturing the general mixing states of an evolving multicomponent particle population 
requires, instead, multidimensional representation. It is here that statistical approaches, most 
prominently Monte Carlo-based particle resolved simulation and the QMOM, come into their own to 
offer the greatest advantage over sectional and modal methods. Monte Carlo is best for benchmark 
simulations, especially for complex multivariate processes in high dimension, whereas the QMOM 
provides economy of representation and great computational speed. 
 The QMOM has been applied to bivariate populations of combustion particles undergoing 
simultaneous coagulation and sintering. Two coordinates, surface area and volume, represent particles 
of mixed size and nonspherical shape [3]. Calculations were benchmarked bu using a CPU-intensive 
2D model of 150 ! 150 = 22500  sections and by Monte Carlo simulation [4]. The theory of QMOM 
extension to higher dimensions has been described and illustrated for the general mixing of 
multicomponent aerosols [5]. Model validation in higher dimension is extremely problematic and 
often limited to analytic test cases. Particle-resolved (PR) simulation, developed by two of us (Riemer 
and West), finally provides a platform for benchmarking the QMOM under realistic conditions where 
other approaches, for example, high-resolution sectional calculations, are impractical to carry out. 
 Particle-resolved simulation of three populations interacting through coagulation is described in 
the following section and used to benchmark QMOM accuracy for Gauss and Gauss-Radau 
quadratures of varying complexity (numbers of tracked moments). We find Gauss quadrature tends to 
overestimate (and Gauss-Radau quadrature underestimate) coagulation rate, nevertheless yielding 
nested bounds and very rapid convergence to the PR-simulation result. 

2.  Calculations 
2.1 Interacting particle populations: Description of the model 
Aerosol aging is an important atmospheric process that tends to make particles more hydrophilic and 
thus better able to serve as sites for cloud droplet condensation, thereby affecting cloud properties and 
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resulting in shorter particle lifetimes. Coating of hydrophobic soot particles with sulfate is one such 
aging process. Here we consider an initial test condition consisting of two distinct particle populations: 
one enriched in soot (mass composition 90% soot and 10% sulfate) the other in sulfate (90% sulfate 
and 10% soot). These subsequently interact through coagulation to produce a third, generally mixed, 
population evolving ultimately to an internally mixed final state. The situation is depicted 
schematically in figure 1 (I and II are the initial sulfate and soot enriched populations, respectively, 
and III is the mixed population at some intermediate stage of development). The coagulation kernel is 
set proportional to the sum of the volumes of the coagulating particles – for simplicity we assume 
particle densities of unity and use mass and volume interchangeably. The sum kernel allows for a 
well-known analytic solution, but only for the total population – not for the individual subpopulations. 
The initial populations are taken to have identical size distributions, differing only in number and 
composition. The total initial population is set at 100,000 particles. As coagulation proceeds and 
particle number is reduced, the population is doubled several times through “cloning” to maintain 
good statistics throughout the PR-simulation. Figure 2 shows the evolution of particle number 
(corrected for cloning) and comparison with the QMOM result, which is exact for the total population. 
Agreement supports the excellent statistics achievable with the PR-simulation method. 
 
 2.2 Moments and quadratures 
Because populations I and II are each of uniform composition, they can be treated by using the 
univariate moments and quadrature point assignments of equations (1) and (2). Population III, on the 
other hand, is generally mixed and is treated by tracking bivariate moments of the form  
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Particle coordinates m

1
 and m

2
 are the masses of sulfate and soot, respectively. Quadrature points are 

easily assigned [5] to give correct values for the lower-order moments listed in figure 1. The blue and 
green points give two such assignments for population III, each capable of reproducing the particle 
number, distribution mean, and covariance matrix elements for that population. Figure 2 compares 
results using 1 point/mode quadrature (red points), tracking number and mass composition for each 
mode, and a more extensive calculation (blue quadrature points) that tracks 14 moments including the 
covariance matrix. 1-point quadrature tracking of number and mass, for each of a number of 
populations, is now in use in the GISS climate model [6] and plans are underway to incorporate the 
more extensive scheme, tracking four moments for each univariate mode and the covariance matrix for 
generally mixed populations (the 14 moment case of the test calculation).  

Figure 3 shows the effect of using more moments and odd numbers of moments; previous 
applications of the QMOM all used Gauss quadrature and even numbers (per mode) of moments. 
Gordon [7] showed in the sixties how to obtain nested upper and lower bounds to the Laplace 
transform of a positive distribution function using only that functions moments. His approach is 
reformulated in [8] in the language of Gauss and Gauss-Radau (GR) quadratures. Briefly, the GR 
scheme places an abscissa at zero (the lower boundary of the distribution function domain) thereby 
using one less moment. The method is tested here for sequences of 1–6 univariate moments separating 
the total distribution now into two populations: population I and others (II and III), left panel; 
population II and others (I and III), right panel. Two separate calculations were performed. It is not 
clear that the true population decay can be written as the Laplace transforms of any fixed distribution 
function. Hence, the behavior illustrated in figure 3 may be fortuitous and needs to be explored for 
other kernels to establish its generality. Nevertheless the calculations clearly show rapid convergence 
of the quadrature approximation, equation (1), even with low numbers of moments. 
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Figure 1. Schematic diagram showing the three particle populations (I, II, and III) and 
approximate quadrature point locations and population densities (1 and 2σ surfaces). 

 

 
Figure 2. Evolution of total particle number (upper left panel) showing exact QMOM (curve) and 
particle-resolved simulation (markers) results. Remaining panels show particle number fraction for 
each population: long-dashed curves, QMOM with 7-moment tracking; short dashed curves, QMOM 
with 14-moment tracking; markers, particle resolved simulation. 
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Figure 3. Testing higher-order Gauss and Gauss-Radau quadrature schemes. Curves are 
labeled by the number of univariate moments for each initial population used in the calculation. 
Gaussian quadratures use an even number of moments; Gauss-Radau quadratures an odd number. 
One point Gauss-Radau quadrature (not shown) yields the trivial upper bound – no decay. Note 
that the use of Gauss-Radau (and Gauss-Lobatto) quadratures in addition to providing bounds 
extends the capability of QMOM to allow for accurate integrations over boundary-limited 
domains [9].  

 
A more detailed description of these results will follow in future publications.  
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